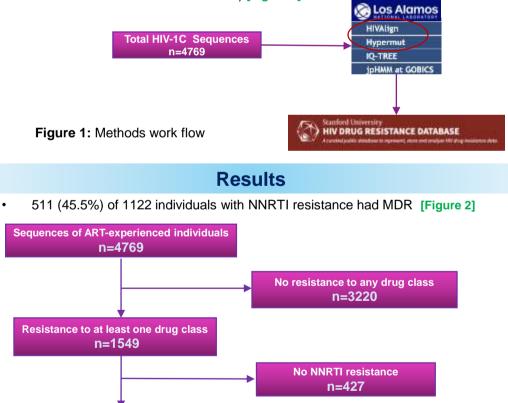
# Genotypic assessment of the viability of second-generation NNRTIs as an alternative therapy for ART-experienced individuals with multi-class HIV drug resistance in Botswana

## Nokuthula S. Ndlovu<sup>1,2</sup>, Ontlametse T. Choga<sup>1,3</sup>, Wonderful T. Choga<sup>1,3</sup>, Natasha O. Moraka<sup>1,3</sup>, Dorcas Maruapula<sup>1</sup>, Patrick Mokgethi<sup>1</sup> Kaelo Seatla<sup>1</sup>, David Nkwe<sup>2</sup>, Vlad Novitsky<sup>1,6</sup>, Sikhulile Moyo<sup>1,6</sup>, Simani Gaseitsiwe<sup>1,6</sup>

<sup>1</sup>Botswana Harvard Health Partnership Gaborone, Botswana; <sup>2</sup>Department of Biological sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana; <sup>3</sup>Department of Medical Sciences, School of Allied Health Professions, University of Botswana, Gaborone, Botswana<sup>4</sup>Careena Centre for Health, Gaborone, Botswana;<sup>5</sup>Ministry of Health and Wellness, Gaborone, Botswana;<sup>6</sup>Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA

#### Background

- An increase in multi-class drug resistant (MDR) HIV variants substantially limits future antiretroviral therapy (ART) options
- There is constant need to monitor the emergence and spread of drug resistance to avoid selection of ineffective regimens
- The study investigated the prevalence of MDR HIV-1 strains within ART experienced individuals in Botswana, and evaluated the susceptibility of these strains to second-generation non-nucleoside reverse transcriptase inhibitors (NNRTIs), doravirine (DOR), etravirine (ETR), and rilpivirine (RPV).


#### **Methods**

#### **Study Population**

This study included **4769** plasma derived HIV sequences from ART experienced individuals who had enrolled for the Botswana Combination Prevention Project (BCPP), 2013-2018, (n = 4747) and the Bosele study, 2015-2018, (n = 22)

#### **Methods**

- Sequences were aligned using the Los Alamos HIVAlign tool and adjusted for hypermutations according to the Hypermut tool
- Major HIV drug resistance mutations (DRMs) were analysed according to the Stanford HIV drug-resistance database.
- Participants harbouring MDR (resistance to ≥2 ARV classes), with at-least NNRTI resistance, were further evaluated for resistance to DOR, ETR, and RPV.
- The Stanford "DRM penalty scores" were utilised to predict resistance levels and interpretation (individuals with low-level, intermediate-level and high-level resistance were considered to have resistance) [Figure 1]



### Results

- Majority of participants had low-level DOR (78.1%) and ETR (80.4%) resistance
- Mutations M230I (64.4%) and E138K (12.2%) both associated with high level RPV resistance were the most predominant [Table 1]
- MDR individuals failing second-generation NNRTIs had a high prevalence of ٠ resistance to NRTIs (399/495; 80.6%) and PIs (255/495; 51.5%) [Figure 3]

#### Table 1: Resistance to DOR, ETR and RPV, and prevalence of RAMs

|                     | DOR (%)          | ETR (%)          | RPV (%)           |
|---------------------|------------------|------------------|-------------------|
|                     | n=398            | n=382            | n=477             |
| Overall (n=495)     | 80.4             | 77.2             | 96.4              |
| Level of resistance |                  |                  |                   |
| Low Level           | 78.1             | 80.4             | 14.9              |
| Intermediate        | 9                | 15.4             | 65                |
| High Level          | 12.8             | 4.2              | 20.1              |
| Specific Mutations  |                  |                  |                   |
| A98G                | -                | -                | 3.6 <sup>a</sup>  |
| L100I               | 0.8ª             | 0.8 <sup>b</sup> | 0.6 <sup>c</sup>  |
| K101E               | 3.5 <sup>a</sup> | 3.7ª             | 2.9 <sup>b</sup>  |
| K101P               | -                | 0.3 <sup>c</sup> | 0.2 <sup>c</sup>  |
| V106A               | 0.5°             | -                | -                 |
| V106M               | 4.0 <sup>b</sup> | -                | -                 |
| E138K               | -                | -                | 12.2 <sup>b</sup> |
| E138Q               | -                | -                | 0.8 <sup>a</sup>  |
| Y181C               | -                | 6.8 <sup>b</sup> | 5.5 <sup>b</sup>  |
| Y181I               | -                | 0.3 <sup>c</sup> | 0.2 <sup>c</sup>  |
| Y188F               | 0.3 <sup>b</sup> | -                | 0.2 <sup>b</sup>  |
| Y188L               | 1.5°             | -                | 1.3 <sup>c</sup>  |
| G190E               | 7.8°             | 8.1 <sup>b</sup> | 6.5 <sup>c</sup>  |
| G190S               | 0.5 <sup>b</sup> | -                | -                 |
| H221Y               | -                | -                | 1.0 <sup>a</sup>  |
| P225H               | 2.3 <sup>b</sup> | -                | -                 |
| F227C               | 0.3 <sup>c</sup> | 0.3 <sup>b</sup> | 0.2 <sup>b</sup>  |
| F227L               | 0.8 <sup>c</sup> | -                | -                 |
| M230I               | -                | -                | 64.4 <sup>b</sup> |
| M230L               | 0.5°             | 0.5 <sup>b</sup> | 0.4 <sup>c</sup>  |
| Y318F               | 0.3 <sup>c</sup> | -                | -                 |

<sup>a</sup> Mutation associated with intermediate resistance

- <sup>b</sup> Mutation associated with high-level resistance
- <sup>c</sup> Mutation associated with low-level resistance
- Mutation associated with susceptibility to the drug

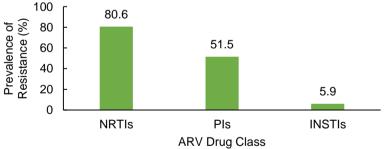



Figure 3 : Prevalence of resistance to NRTIs, PIs and INSTIs within MDR ART experienced individuals

## Conclusion

We observed high proportion of resistance to second-generation NNRTIs among treatment-experienced individuals with MDR HIV variants who had no prior exposure to second-generation NNRTIs.



Figure 2: Results flow chart

#### DOR, ETR and RPV Resistance

NNRTI resistance

- Overall, 495/511 (96.9%; 95% CI: 95.1-98.2) had resistance to at least one second-generation NNRTI
- 99/511 (19.4%) had resistance to 1 second-generation NNRTI: either RPV (81.9%) or ETR (18.9%)
- 30/511 (5.9%) had resistance to 2 second-generation NNRTIs: either RPV and ETR (53.3%) or RPV and DOR (46.7%)
- 366/511 (71.6%) were resistant to all three ARVs DOR, ETR and RPV

- This limits their potential use as an alternative therapy for treatment experienced MDR individuals with MDR
- Our results strongly suggest genotypic resistance testing prior to ART use among treatment-experienced individuals.




Acknowledgments

### References

- Lombardi, Francesca, et al. "Prevalence and factors associated with HIV-1 multi-drug resistance over the past two decades in the Italian ARCA database." International journal of antimicrobial agents 57.2 (2021): 106252.
- Moyo, Sizulu, et al. "HIV drug resistance profile in South Africa: findings and implications from the 2017 national HIV household survey." PLoS One 15.11 (2020): e0241071.



