

SWITCHING TO LONG ACTING INTRAMUSCULAR CABOTEGRAVIR AND RILPIVIRINE IN VIROLOGICALLY SUPPRESSED PLHIV TREATED WITH DOLUTEGRAVIR/RILPIVIRINE. A SUBESTUDY FROM THE RELATIVITY COHORT

María José Galindo Puerto, Luis Buzón Martín, Jesús Troya, Luz Martín Carbonero, Laura Bermejo Plaza, Miguel Torralba, Carmen Montero Hernández, Miguel Alberto de Zárraga Fernández Roberto Pedrero-Tomé, Noemí Cabello Clotet, Víctor Arenas García, Javier García Abellán, Alfonso Cabello Úbeda, Juan Emilio Losa García, María José Crusells Canales, Jara Llenas García, Beatriz De la Calle Riaguas, Luis Morano, María Aguilera García, Patricia Martín Rico, Enrique Bernal, Sara de la Fuente, Ruth Calderón Hernáiz, María Antonia Sepúlveda, Marouane Menchi, Marta Olmo Claveros, Manuel Gutiérrez Cuadra, Miriam Estebanez, Bárbara Alonso Moreno, Álvaro Cecilio, Miguel Egido Murciano, Guillermo Cuevas Tascón, on behalf of the **RELATIVITY PROJECT GROUP**

BACKGROUND

Cabotegravir and Rilpivirine (CAB+RPV) is the first long-acting injectable (LAI) treatment approved for people living with HIV (PLWH). It is indicated in patients with undetectable viral load, without evidence or suspected resistance to CAB+RPV. Dolutegravir/Rilpivirine (DTG+RPV) is similar to CAB+RPV and has been used in real life as oral lead-in before starting LAI.

RESULTS

MATERIAL AND METHODS

The RELATIVITY cohort is a multicentre, non-controlled, ambispective study on HIV virologically suppressed individuals who switched to LAI CAB+RPV. We analysed the characteristics of the patients who were on treatment with DTG+RPV prior to the switch. Additionally, patients were compared based on prior knowledge of their genotype. Quantitative variables were contrasted using T-Student and U-Mann-Whitney tests; categorical variables were compared using Chi-Square and Fisher's Exact tests.

A total of 313 individuals from 30 hospitals in Spain were analysed, representing 22.9% of the Relativity cohort, which comprised 1366 individuals. Median follow-up was 7.9 [IQR:5.2-11.5] months. 83.3% were male. The most common transmission route was GBMSM (57.8%), followed by HTX (24.9%). AIDS prevalence was 11.4%. The most frequent comorbidities were dyslipidaemia (24.3%), hypertension (9.3%), and psychiatric disorders (8.3%). Previous genotyping was available in 44.4% (134/313) of cases: 13/134 presented NNTRI mutations. Patients with known genotype tended to be younger (46.2 [40.0, 54.0] vs. 49.8 [40.0, 58.0]; p-value = 0.080) and Spanish instead of foreigners (84.3%. vs 70.7%, p-value = 0.009). Prior virological failure (VF) was more common when previous genotype was available (8.5% vs. 5.5%; p-value = 0.029). Time on ART was similar on both groups (11.0 [8.0 - 17.0] years on ART). Patients decided to switch regimens for convenience or improve quality of life (52.1%), personal request (28.4%), simplification (25.9%), and malabsorption (8.0%) [more frequent reason (12.7%) among patients with known genotype (p-value = 0.023)]. Eleven patients discontinued treatment: two due to systemic adverse effects and only one due VF (known genotype group).

	Known genotype	Genotype not known	p-value
	126	162	
Demograph			
Age (years), median [IQR]	46.1 [40.0, 54.8]	50.0 [40.0, 58.0]	0,061
Body Mass Index (Kg/m2), median [IQR]	25.4 [22.4, 28.2]	24.4 [22.8, 27.0]	0,188
Female, n (%)	18 (14.3)	29 (17.9)	0,426
Male, n (%)	108 (85.7)	132 (81.5)	1
Male Transsexual, n (%)	0 (0.0)	0 (0.0)	1
Female Transsexual, n (%)	0 (0.0)	1 (0.6)	1
Country of origin, n (%) Spain	106 (84.1)	112 (70.9)	0,011
Migrants	20 (15.9)	46 (29.1)	0,011
Latin America	13 (68.4)	37 (80.4)	0,745
Africa	0 (0.0)	2 (4.3)	1
Central Europe	0 (0.0)	1 (2.2)	1
Occidental Europe	1 (5.3)	3 (6.5)	1
East Europe	5 (26.3)	2 (4.3)	0,027
Asia	0 (0.0)	1 (2.2)	1
Transmission	on route		
Transmission route, n (%) GBMSM	65 (54.2)	89 (58.9)	0,382
НТХ	34 (28.3)	35 (23.2)	0,265
PID	10 (8.3)	18 (11.9)	0,677
HIV Da	nta		
CD4 nadir (cells/mm3), median [IQR]	295.0 [190.0, 444.0]	299.0 [133.0, 420.0]	0,432
Viral Load (copies/ml) at diagnosis (median [IQR])	52200.0 [23905.2, 137375.0]	48000.0 [6961.2, 155445.0]	0,312
Months from diagnosis to initiation of first ART (median [IQR])	2.0 [0.5, 20.0]	3.0 [1.0, 24.0]	0,172
AIDS , n (%)	13 (10.7)	21 (13.3)	0,646
Years of ART from initiation of treatment to initiation of CBG/RPV (median [IQR])	10.5 [8.5, 13.8]	11.0 [7.2, 19.0]	0,435
Months from undetectability to initiation of CAB+RPV (median [IQR])	105.0 [67.0, 132.0]	115.0 [68.0, 168.0]	0,063
Previous virologic failure (%)	10 (8.2)	9 (5.7)	0,037

	Table 1:Comparative analysis of the baseline characteristics of patients living with HIV on treatment with	
DIGINI V WIIO 3WIGHED TO OADINI V EAFWIII OF WITHOUT DATE OF PICTIOUS GEHOLYPE	DTG+RPV who switched to CAB+RPV LAI with or without data of previous genotype	

	100
Genotype	
Basal genotype type B, n (%)	58 (81.7)
A1/A2, n (%)	1 (1.4)
F/CRF, n (%)	1 (1.4)
other, n (%)	11 (15.5)
Mutations	
Wild type without mutations, n (%)	80 (63.5)
Mutations in IT analog resistance, n (%)	15 (11.9)
184V, n (%)	2 (1.6)
Other, n (%)	16 (12.7)
Mutations in IT resistance to non-analogs, n (%)	12 (9.5)
K103N, n (%)	9 (7.1)
E138A, n (%)	0 (0.0)
Other, n (%)	9 (7.1)
Mutations in integrase, n (%)	0 (0.0)

Table 2. basal genotype

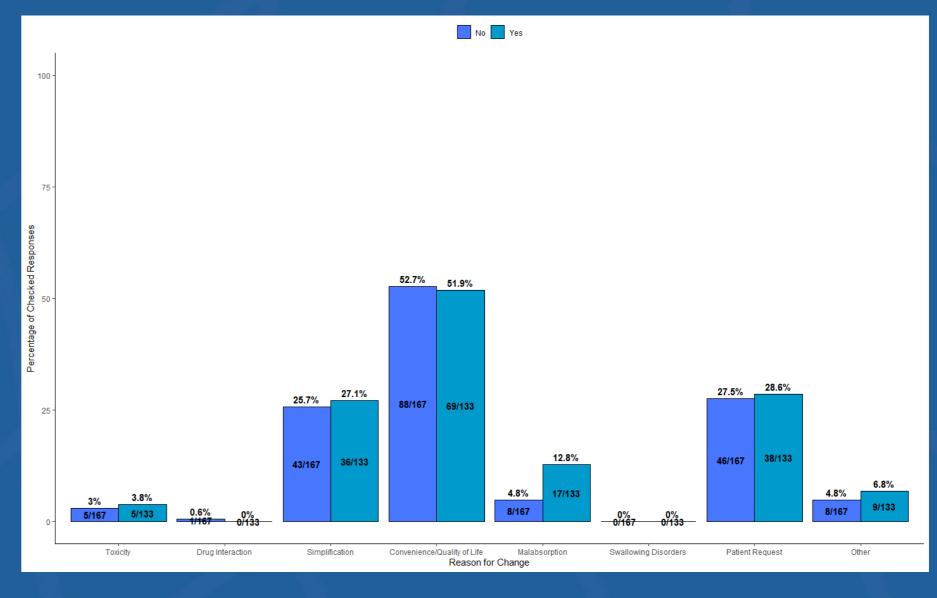


Figure 1:- Reasons for switching to CAB+RPV

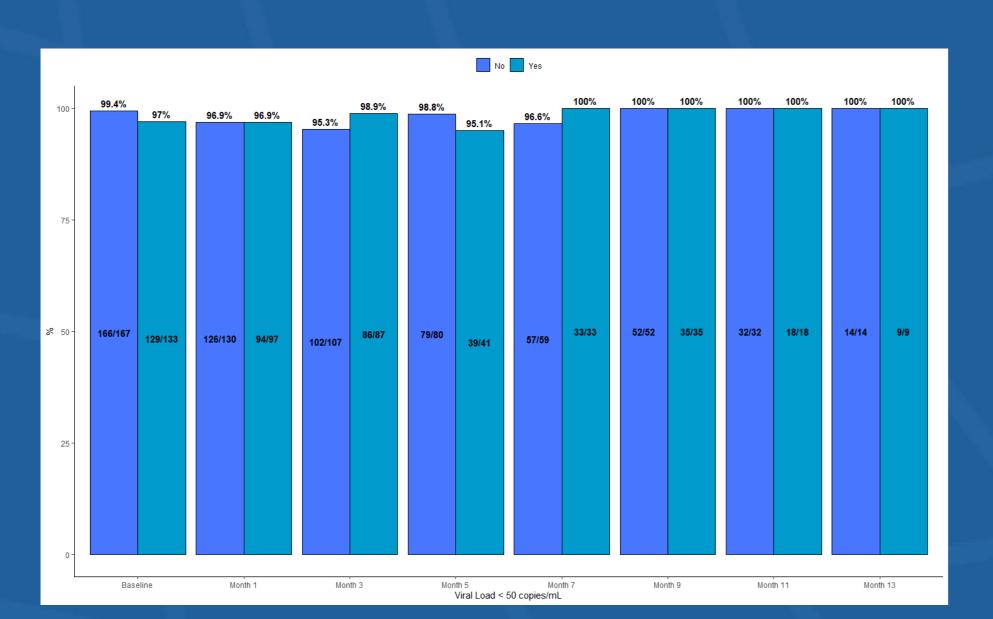


Figura 2: percentage of patients with and wihout previous genotype vith VL<50 cp/ml during follow-up

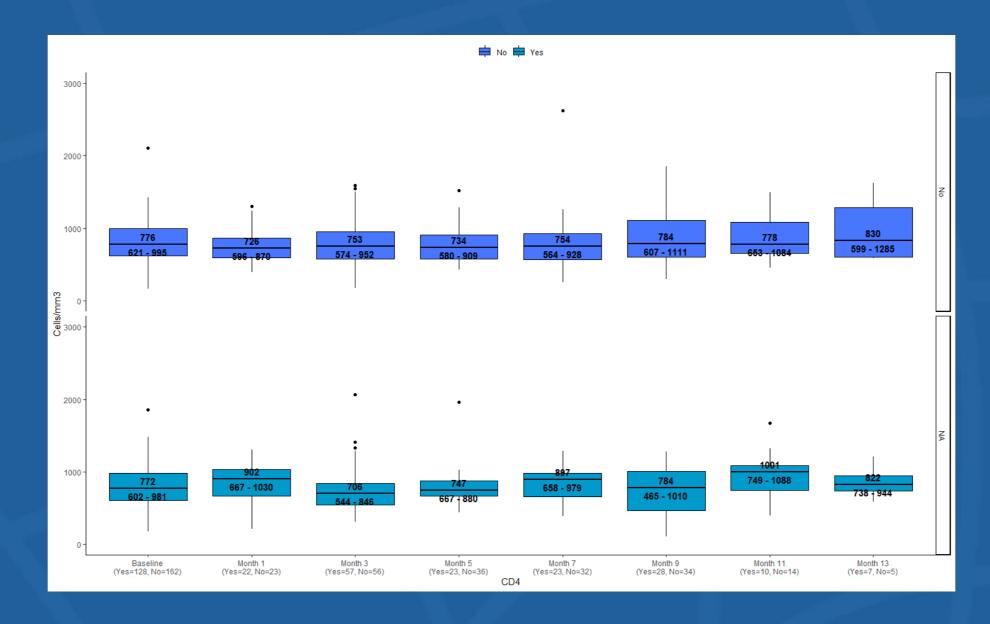


Figure 3: evolution of CD4 during the follow-up

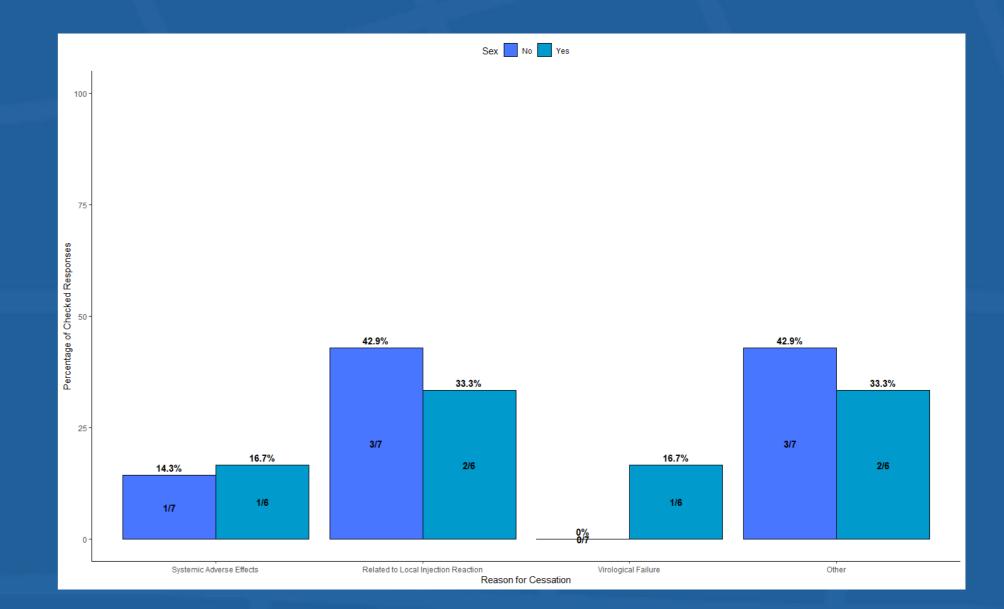
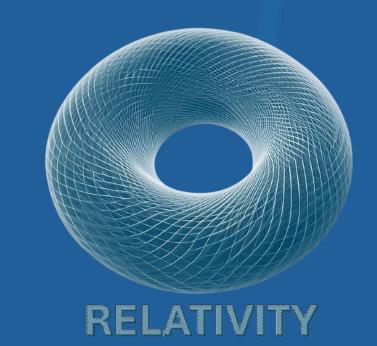



Figure 4: reasons to switch from CAB+RPV LAI to other options in patients with or without previous genotype

<u>CONCLUSIONS</u>

In real life settings, switching from DTG+RPV to CAB+RPV is safe and well tolerated. Our results suggest that in virologically suppressed PLHIV under treatment with DTG/RPV, previous genotyping results might not be necessary in order to switch to CBG/RPV