Resistance and Pharmacokinetic/Pharmacodynamic Analyses of GS-1720, a Once-Weekly Oral Integrase Strand Transfer Inhibitor

Brie Falkard,* Haeyoung Zhang, Mutaz Jaber, Eva Mortensen, Furong Wang, Christian Callebaut, and Dhananjay D. Marathe

Gilead Sciences, Inc., Foster City, CA, USA *Presenting author

Conclusions

- No observed cases of emergent integrase (IN) resistance occurred after GS-1720 monotherapy treatment in this Phase 1b proof-of-concept study
- GS-1720 showed robust antiviral activity (≥1.5 log₁₀ copies/mL decline in HIV-1 RNA from baseline) at Day (D) 11 concentrations above inhibitory quotient (IQ) 2
- The pharmacokinetics (PK)/pharmacodynamics (PD) data and lack of observed resistance support further clinical development
- An oral combination regimen of once-weekly GS-1720 and GS-4182^a is being evaluated in Phase 2 studies among virologically suppressed and treatment-naïve people with HIV-1 (PWH)^b

Plain Language Summary

- GS-1720 is a medicine that is being studied to treat HIV, but it is not yet approved for people to take outside of a clinical trial
 - GS-1720 can be taken just once a week unlike many other HIV medicines that need to be taken every day
- We tested many doses of GS-1720 in people with HIV to see how well it works and to study if the HIV virus developed any changes that helped It resist the effects of GS-1720 (called treatment resistance)
- We found that GS-1720 worked well to treat HIV, and people who took GS-1720 did not develop resistance to this medicine
- We are planning more studies to test if GS-1720 combined with another drug called GS-4182 can be taken once a week to treat people with HIV

Background

- Adherence to HIV-1 treatment reduces the risk of virologic failure, yet can be challenging; an unmet need for long-acting antiretroviral therapies (ART) remains^{1,2}
- GS-1720 is an oral integrase strand transfer inhibitor (INSTI) with potent anti-HIV-1 activity and a median half-life of 9.3 days, supportive of weekly dosing³
 In a Discert the buddle of a 2120 resulted in a median dealine in LIV (4 DNA form benefits to DA4 of a 2120 resulted in a median half-life of 9.3 days, supportive of weekly dosing³
- In a Phase 1b study in PWH, GS-1720 resulted in a mean decline in HIV-1 RNA from baseline to D11 of >2 log₁₀ copies/mL in three of the four GS-1720 dose cohorts, with a 1.74 log₁₀ copies/mL decline observed in the lowest dose cohort⁴

Objective

To assess GS-1720 resistance and PK/PD from the current Phase 1b study

Methods

- This Phase 1b, open-label, multicohort substudy enrolled PWH^c
- Participants with detectable HIV-1 viral load were enrolled into four cohorts (n=7/cohort) and administered oral GS-1720 on D1 and D2, then switched on D11 to bictegravir/emtricitabine/tenofovir alafenamide (B/F/TAF) or an alternative standard of care (SOC) ART regimen (Figure 1)
- Participants were tested for genotypic and phenotypic IN resistance at baseline (screening visit) and D11 using the GeneSeq[®] Integrase^d and PhenoSense[®] Integrase^e assays^f
- Participants with suboptimal virologic response (SVR) after D11, defined as HIV-1 RNA ≥50 copies/mL and <1 log₁₀ HIV-1 RNA reduction from D11, qualified for further genotypic and phenotypic resistance testing
- Intensive PK sampling was collected on D1 and D2 up to 12 hours post-dose, followed by single anytime plasma PK sampling throughout the study
- GS-1720 plasma concentrations were quantified using a validated high-performance liquid chromatography-tandem mass spectrometry bioanalytical method

Figure 1. Study Design

Key eligibility criteria:	30 mg (n=7) B/F/TA	F or SOC
Aged 18–65 years	150 mg (n=	7) B/F/TA	F or SOC
• HIV-1 RNA 5000–≤400,000 cpm	450 mg (n=	7) B/F/TA	F or SOC
 CD4+ T-cells >200 cells/µL 	900 mg (n=	7) B/F/TA	F or SOC
 Treatment naïve OR treatment experienced, but naïve to INSTIs and off ART for ≥12 weeks 	D1 2 GS-1720 Oral	I 11 ▲ Primary Endpoint	60 ▲ Last Study
	Ulai	Engboint	Sluuv

ART, antiretroviral therapy; B/F/TAF, bictegravir/emtricitabine/tenofovir alafenamide; cpm, copies/mL; D, day; INSTI, integrase strand transfer inhibitor; SOC, standard of care

Administration

Results

Viral Load Decline

- One participant in the lowest dose cohort had virologic rebound during the monotherapy period
- Maximum HIV-1 RNA reduction was –1.11 log₁₀ copies/mL at D7, increasing to –0.26 log₁₀ copies/mL at D11, with resuppression to <50 copies/mL on B/F/TAF
- No INSTI resistance associated mutations (RAMs) or phenotypic changes to licensed INSTIs were detected at D11 By D60, 24/27 participants had HIV-1 RNA <50 copies/mL
- The three participants who did not reach HIV-1 RNA <50 copies/mL included one participant in the GS-1720 150 mg cohort and two participants in the GS-1720 450 mg cohort
- All participants had considerable viral load decrease from baseline

Resistance Analysis

- All participants were phenotypically susceptible to GS-1720 and INSTIs at baseline
- No primary INSTI RAMs were observed (Table 2)
- Secondary INSTI RAMs were detected, with no impact on phenotypic sensitivity (Table 3)
- No treatment-emergent resistance to the INSTI class was detected at D11 or in those with SVR (Tables 2 and 3)
 Phenotyping results for all participants at D11 demonstrated sustained susceptibility after monotherapy dosing relative to the wild-type for bictegravir, dolutegravir, elvitegravir, raltegravir, and GS-1720
- No treatment-emergent primary RAMs to the INSTI class were detected at D11 or follow-up (Table 2)
- No treatment-emergent secondary mutations to the INSTI class were detected at D11 or follow-up (Table 3)

Table 2. Participants With Primary INSTI RAMs

	Participants with Primary INSTI RAMs				
GS-1720 dose	Baseline D11ª		Follow-up in Participants with SVR ^b	Treatment-Emergent Resistance	
30 mg (n=7)	0	0	-	0	
150 mg (n=7)	0	0	0	0	
450 mg (n=7)	0	0	0	0	
900 mg (n=7)	0	0	-	0	

^aD11 samples were analysed for 27 participants. Genotypic data were obtained from 20/27 participants (74%) and phenotypic data were obtained from 12/27 participants (44%). ^bTwo participants in the 150 mg group and two participants in the 450 mg group qualified for further INSTI genotypic and phenotypic resistance testing. D, day; INSTI, integrase strand transfer inhibitor resistance; RAM, resistance-associated mutation; SVR, suboptimal virologic response.

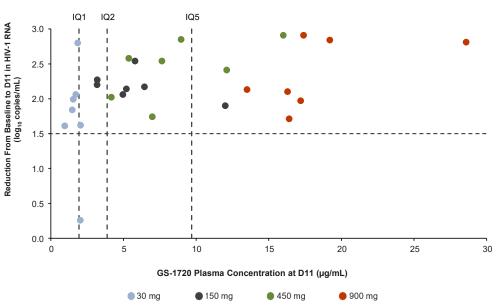
Table 3. Participants With Secondary INSTI RAMs

	Participants with Secondary INSTI RAMs (n)				
GS-1720 dose	Baseline	D11ª	Follow-up in Participants with SVR ^b	Treatment-Emergent Resistance	
30 mg (n=7)	M50I (1) S119P/R/T (3) V151A/I/L (1) E157K/Q (1)	M50I (1) S119P/R/T (1) V151A/I/L (1) E157K/Q (1)	-	0	
150 mg (n=7)	0	0	0	0	
450 mg (n=7)	M50I (3) S119P/R/T (2)	M50I (3) S119P/R/T (2)	M50I (1) S119P/R/T (1)	0	
900 mg (n=7)	M50I (2) S119P/R/T(2)	M50I (1) S119P/R/T (1)	-	0	

^aD11 samples were analysed for 27 participants. Genotypic data were obtained from 20/27 participants (74%) and phenotypic data were obtained from 12/27 participants (44%). ^bTwo participants in the 150 mg group and two participants in the 450 mg group qualified for further INSTI genotypic and phenotypic resistance testing. D, day; INSTI, integrase strand transfer inhibitor resistance; RAM, resistance associated mutation; SVR, suboptimal virologic response.

PK/PD Analysis

- Mean GS-1720 concentrations at D11 and HIV-1 RNA reductions from baseline to D11 are displayed in Table 4
- At D11, participants with GS-1720 concentrations above two-fold the IQ (IQ2; 3.876 µg/mL) showed robust antiviral activity of ≥1.5 log₁₀ copies/mL reduction in HIV-1 RNA from baseline (Figure 2)


Table 4. Mean GS-1720 Concentrations and HIV-1 RNA Reductions From Baseline at D11

GS-1720 dose	Mean GS-1720 Concentrations at D11 (µg/mL)	Relative Mean IQ Values at D11 (µg/mL)	Mean Reduction From Baseline in HIV-1 RNA at D11 (log ₁₀ copies/mL)	
30 mg (n=7)	1.64	0.8	1.74	
150 mg (n=7)	=7) 5.87 3.0		2.18	
450 mg (n=7)	8.78	4.5	2.44	
900 mg (n=7)	18.4	9.5	2.37	

D, day; IQ, inhibitory quotient.

Visit

Figure 2. PK/PD Analysis of GS-1720 at D11

opies of this poster

P035

Study Population

- Twenty-eight participants were enrolled
- Median (range) age was 33 (18–62) years, and 10.7% were female (Table 1)

Table 1. Baseline Characteristics

	30 mg (n=7)	150 mg (n=7)	450 mg (n=7)	900 mg (n=7)	Total participants (N=28)
Median (range) age, years	35 (18–55)	38 (27–61)	28 (25–62)	31 (24–43)	33 (18–62)
Female sex at birth, n (%)	1 (14.3)	1 (14.3)	1 (14.3)	0	3 (10.7)
Race, n (%) American Indian/Alaska Native Asian Black Native Hawaiian/Pacific Islander White Other	1 (14.3) 0 3 (42.9) 0 1 (14.3) 2 (28.6)	1 (14.3) 0 3 (42.9) 0 3 (42.9) 0	0 0 2 (28.6) 3 (42.9) 2 (28.6)	0 2 (28.6) 0 2 (28.6) 3 (42.9)	2 (7.1) 2 (7.1) 6 (21.4) 2 (7.1) 9 (32.1) 7 (25.0)
Ethnicity, n (%) Hispanic or Latinx	4 (57.1)	2 (28.6)	2 (28.6)	5 (71.4)	13 (46.4)
Median (Q1–Q3) HIV-1 RNA, log ₁₀ copies/mL	4.36 (4.08–5.19)	4.74 (4.55–4.98)	5.31 (5.12–5.42)	4.90 (4.51–5.29)	4.90 (4.48–5.30)
Median (Q1–Q3) CD4+ T-cells/µL	454 (334–505)	264 (194–389)	350 (336–430)	440 (276–475)	370 (275–450)
ART naïve, n (%)	6 (85.7)	4 (57.1)	6 (85.7)	6 (85.7)	22 (78.6)

ART, antiretroviral therapy; Q, quartile

Footnotes "Results from the GS-1182 Phase 1a study are presented in the HIV Glasgow 2024 poster #P036 (accessible via QR code)^{1,} *NCT06544733 includes virologically suppressed PWH; NCT06613685 includes treatment-naive PWH; *NCT0558507, *GeneSeq0 Integrase sequences the N gene to identify known RAM to the INSTI class. *PhenoSense® Integrase determines the phenotypic sensitivity to all currently approved antifetrovinal class (biologizer), doublegravir, advelogravir, advelogravity and GS+172, *Morgania Biosciences, South Sam Francisco, California, USA.

References 1. Scarsi KK, et al. J Int Assoc Provid AIDS Care. 2021;20:23259562211009011. 2. Enriquez M, McKinsey DS. H/V AIDS - Research and Paliative Care. 2011;3:45–51. 3. Zhang H, et al. AIDS Abstract WEPEB116. Presented at AIDS 2024, July 22–26, Munich, Germany. 4. Fichtenbaum CJ, et al. CROI Abstract 116. Presented at CROI 2024, March 3–6, Denver, Colorado, USA. 5. Shalk N, et al. HIV Giasgow, Giasgow, United Kingdow, November 10–13, 202. P036 Horizontal dashed line shows 1.5 log₁₀ copies/mL reduction in HIV-1 RNA from baseline to D11. IQ is defined as protein-adjusted effective concentration to achieve 95% effective inhibition. IQ1 = 1.938 µg/mL; IQ2 = 3.876 µg/mL; IQ5 = 9.690 µg/mL. D, day; IQ, inhibitory quotient; PD, pharmacodynamic; PK, pharmacokinetic.

Author Disclosures: Brie Falkard, Haeyoung Zhang, Mutaz Jaber, Eva Mortensen, Furong Wang, Christian Callebaut, and Dhananjay D. Marathe are all employees and shareholders of Glead Sciences, Inc.

Acknowledgements: We extend our thanks to the participants, their families, and all participating investigators. This study was funded by Gliead Sciences, Inc. Medical writing and editorial support were provided by Sophie Roberts and Sherriden Beard, MA, of Ashfield MedComms (Macclesfield UK), an Inizio company, and was funded by Gliead Sciences, Inc.

Correspondence: Brie Falkard, brie.falkard@gilead.com