Evolution of anti-SARS-CoV-2 spike protein titers after two-dose COVID-19 vaccination among people living with HIV

Wang-Da Liu1,2, Sui-Yuan Chang3, Jann-Tay Wang3, Hsin-Yun Sun3, Yu-Shan Huang1, Kuan-Yin Lin1,3, Un-In Wu1, Guei-Chi Li1, Wen-Chun Liu1, Yi-Ching Su1, Pu-Chi He3, Chia-Yi Lin3, Chih-Yu Yeh5, Yi-Ting Chen6, Yu-Zhen Luo6, Pei-Ying Wu4, Ling-Ya Chen4, Hsi-Yen Chang4, Wang-Huei Sheng4, Su-Min Hsieh4, Chien-Ching Hung4, Shan-Chwen Chang1

1Department of Internal Medicine, National Taiwan University Hospital, Taipei
2Department of Medicine, National Taiwan University Cancer Center, Taipei
3Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
4Center of Infection Control, National Taiwan University Hospital, Taipei, Taiwan
5Department of Nursing, National Taiwan University Hospital, Taipei, Taiwan

Background

• A community COVID-19 outbreak caused by the B.1.1.7 SARS-CoV-2 variant occurred in Taiwan in May, 2021. High-risk populations such as people living with HIV (PLWH) were recommended to receive two doses of COVID-19 vaccines then.
• While SARS-CoV-2 vaccines have demonstrated promising results in general population, real-world information on the serological responses remains limited among PLWH.

Methods

• PLWH receiving two homologous SARS-CoV-2 vaccines from 2020 to 2021 were enrolled.
• Determinations of anti-SARS-CoV-2 spike IgG titers were performed every one to three months, until PLWH received the third dose of SARS-CoV-2 vaccine or had confirmed SARS-CoV-2 infection. All serum samples were tested for anti-nucleocapsid antibody and those tested positive were excluded from analysis.
• The primary end points were serologic responses at weeks 1-12 after the second dose of SARS-CoV-2 vaccination. In order to estimate the potential vaccine effectiveness through antibody measurements, a cut-off value of 141 BAU/mL of anti-spike IgG were used, which was considered to be correlated with the presence of neutralizing antibodies by Dimeglio C, et al..

Results

• A total of 1,253 participants were enrolled, including 829 (66.2%) receiving AZD1222 vaccine, 232 (18.5%) mRNA-1273 vaccine, 128 (10.2%) BNT162b2 vaccine and 64 (5.1%) MVC-COV1901 vaccine.
• Of all time periods, participants receiving mRNA-1273 vaccine consistently had higher antibody levels than those receiving non-mRNA vaccine (p<0.001 for all time-period comparisons) (Figure 1).
• Of all participants receiving two homologous vaccines, factors associated with failure to reach an anti-spike IgG titer >141 BAU/mL within 12 weeks were those receiving AZD1222 vaccine (adjusted odds ratio [aOR], 10.66; 95% CI, 7.08-16.06, those with mRNA-1273 vaccine as reference) and MVC-COV1901 vaccine (aOR, 9.21; 95% CI, 4.92-17.25, those with mRNA-1273 vaccine as reference).
• Of participants receiving two doses of AZD1222 vaccine, factors associated with failure to reach an anti-spike IgG titer >141 BAU/mL within 12 weeks included diabetes mellitus, chronic kidney disease (defined as eGFR<60 ml/min/1.73m2) and CD4 count <200 cells/mm3 upon the first dose of vaccination (Figure 2).

Conclusion

• Two doses of homologous mRNA vaccination had significantly higher immunogenicity than vaccination with AZD1222 or MVC-COV1901 among PLWH.
• PLWH with CD4 count <200 cells/mm3 had consistently lower antibody responses to vaccination with either mRNA or non-mRNA vaccines.

Figure 1. Serologic responses after the second dose of COVID-19 vaccination at different follow-up intervals (mRNA [mRNA-1273 and BNT162b2] vs others [AZD1222 and MVC-COV1901]).

Figure 2. Risk associated with low anti-spike IgG response within the first 12 weeks after PLWH received two doses of AZD1222 vaccine in the multivariate logistic regression model.