

Prevalence of *Mycoplasma genitalium* infection with resistance-associated mutations to macrolides and fluoroquinolones among people living with HIV and people on pre-exposure prophylaxis in Taiwan

Yi-Ching Su,¹ Li-Hsin Su,¹ Wen-Chun Liu,¹ Hsin-Yun Sun,¹ Wang-Da Liu,^{1,2} Kuan-Yin Lin,^{1,3} Yu-Shan Huang,¹, Ming-Jui Tsai,⁴ Guan-Jhou Chen,^{1,5} Sui-Yuan Chang,^{6,7} Chien-Ching Hung^{1,4,8}

¹Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; ²Department of Medicine, National Taiwan University Cancer Center, Taipei, Taiwan; ³Center of Infection Control, National Taiwan University Hospital, Taipei, Taiwan; ⁴Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan; ⁵Min-Sheng General Hospital, Taoyuan, Taiwan; ⁶Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan; ⁷Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan; ⁸Department of Tropical Medicine and Parasitology, National Taiwan University College of Medicine, Taiwan

BACKGROUND & OBJECTIVES

- 1. Mycoplasma genitalium (MG) is an emerging etiology of sexually transmitted infection (STI) with increasing trends of antimicrobial resistance.
- 2. Data are limited among at-risk populations because molecular

diagnosis of MG infection is infrequently performed in individuals seeking counseling and treatment of STIs in Asia-Pacific region.

3. We aimed to examine the prevalence of MG infection and its genotypic resistance to macrolides and fluoroquinolones among people living with HIV (PLWH) seeking STI care and people seeking pre-exposure prophylaxis (PrEP) for HIV in Taiwan.

MATERIALS & METHODS

1. Between August 2021 and September 2022, PLWH presenting with STIs and PrEP users were enrolled.

2. Clinical specimens were collected from the rectum, urethra, and oral cavity for identification of seven pathogens (MG, *C. trachomatis*, *N. gonorrhoeae*, *T. vaginalis*, *M. hominis*, *Ureaplasma urealyticum*, and *U. parvum*) with the use of multiplex PCR assay (AllplexTM STI Essential Assay, Seegene Inc., South Korea).

 Tests for rapid plasma reagin (RPR) titer and HCV RNA were performed.
 Resistance-associated mutations of MG to macrolides were examined in region V of the 23S rRNA gene (A2058 and A2059), to tetracycline in 16S rRNA gene, and to fluoroquinolones in parC and gyrA gene (Figure 1).

Table 1. Clinical characteristics between PLWH and PrEP with Mycoplasma genitalium infection

Characteristics		PLWH	PrEP users	P value
Patient number, N=		327	236	-
Age at the initiation for <i>M. g</i> median (IQR), years	<i>enitalium</i> testing,	36.1 (31.7-42.5)	30.1 (26.7-33.9)	<0.001
HCV viremia at the estimate <i>genitalium</i> testing, n/N (%)	d time-point of <i>M.</i>	8/238 (1.9)	0/133 (0)	0.078
<i>M. genitalium</i> Infection,	rectal swab	31 (75.6)	15 (71.4)	0.961
	urethral swab	9 (22.0)	6 (28.6)	0.793
11 (70)	oral rinse	1 (2.4)	0	>0.999
Gonorrhea, n/N (%)		12/324 (3.7)	3/231 (1.3)	0.145
RPR \geq 1:4 at the estimated to genitalium testing, n/N (%)	ime-point of <i>M</i> .	244/318 (76.7)	34/225 (15.1)	<0.001
Syphilis acquisition, n (%)	Primary	16 (8.7)	3(10.7)	>0.999
	Secondary	62 (33.9)	12 (42.9)	0.933
	Early latent	105 (57.4)	11 (39.3)	0.112
	Late latent	-	2 (7.1)	<0.01
Latest RPR \geq 1:4, n/N (%)		164/313 (52.4)	9/186 (4.8)	<0.001
	rectal swab	18 (81.8)	8 (100)	0.491
co-infection other STIs, n (%) urethral swab	3 (13.6)	-	
	oral rinse	1 (4.6)	-	

RESULTS

- 1. 563 participants were enrolled: 327 PLWH and 236 PrEP users (Table 1).
- The overall prevalence of MG infection was 11.0% (n=62) (95% CI, 8.4-13.6%): 74.2% in rectal swab, 24.2% in urethral swab, and 1.6% in oral rinse samples.
- 3. The prevalence of MG infection was similar between PLWH and PrEP users (12.5% vs 8.9%, p=0.221). The rate of co-infection with other STIs was 48.4% (95% CI, 36.0-60.8) (Table 1).
- The prevalence rates of MG coinfections with other single pathogen in PLWH was 77.2% (17/22) and in PrEP was 75.0% (6/8), respectively and showed the highest rate in UU with 73.3% (Table 2).
- 5. The overall prevalence of resistance-associated mutations of MG to macrolides only was 6.0%, fluoroquinolones only 13.3%, and both macrolides and fluoroquinolones 10.0%.
- 6. 55 (88.7%) patients received doxycycline treatment. The test-of-

 Table 2. The prevalence rates of MG coinfections with other STI pathogens between

 PLWH and PrEP users

Single Dual Triple

pathogens	PLWH	PrEP users	P value	
atient number, N=	22	8	-	
Т	2	1	>0.999	
iC	2	0	0.956	
1H	3	0	0.68	
U	10	5	0.68	
1H+UU	2	1	>0.999	
T	0	1		

cure (TOC) testing was performed in 20 (36.4%) patients after a median of 45.5 days (IQR=28-71) of treatment. Treatment failure was detected in 11 patients.

7. The overall prevalence of resistance-associated mutations of MG to macrolides was 11.1%, to fluoroquinolones was 20.0%, and to both macrolides and fluoroquinolones 0% after in treatment (Table 3).

CONCLUSIONS

While the rate of MG infection remains low among PLWH seeking STI care and PrEP users, surveillance studies to follow the trends of antimicrobial resistance are warranted to inform the treatment recommendations for MG infection.

	0	上	0.352
GC+UU	2	0	0.956
GC+MH+UU	1	0	>0.999

Table 3. The prevalence of resistance-associated mutations of MG between PLWH and PrEP users

Antibiotic resistance mutations		Baseline		At test-of-cure	
		PLWH	PrEP users	PLWH	PrEP users
Fluoroquinolone	parC	16.3% (7/43)	5.9% (1/17)	25.0% (1/4)	16.7% (1/6)
	gyrA	0% (0/41)	0% (0/17)	0% (0/5)	0% (0/6)
Macrolide	23S rRNA	2.9% (1/34)	12.5% (2/16)	0.0% (0/4)	20.0% (1/5)
Dual	23S rRNA and parC	2.9% (1/34)	25.0% (4/16)	-	_
Tetracycline	16SrRNA	0% (0/40)	0% (0/18)	0.0% (0/4)	0.0% (0/6)
Tetracycline	16SrRNA	0% (0/40)	0% (0/18)	0.0% (0/4)	0.0% (0/6)

CORRESPONDING AUTHOR Chien-Ching Hung, MD, PhD, Professor <u>hcc0401@ntu.edu.tw</u>