

P114

Effect of 12-week cART on Gut Mucosal Immunity and Microbiome in Primary HIV Infection (PHI)

Camilla Tincati^{1*}, Valeria Bono¹, Monica Falleni², Delfina Tosi², Vaibhav Yellenki¹, Roberta Rovito¹, Stefano Rusconi³, Andrea Giacomelli⁴, Antonio Muscatello⁵, Stefania Dispinseri⁶, Antonella d'Arminio Monforte¹, Andrea Calcagno⁷, Silvia Nozza⁶, Andrea Gori⁵, Giulia Marchetti¹ for the Inaction (*Italian Network of Acute HIV Infection*) Study Group

¹ Clinic of Infectious Diseases, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan; ² Pathology Unit, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan; ³UOC Malattie Infettive, Ospedale Civile di Legnano, ASST Ovest Milanese, Legnano; ⁴ Clinic of Infectious Diseases, Department of Biomedical and Clinical Sciences, L. Sacco Hospital, University of Milan, Milan; ⁵Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan; ⁶Viral Evolution and Transmission Unit, IRCCS Ospedale San Raffaele, Milan;⁷Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Turin

Introduction

The short-time effects of cART in PHI on mucosal immune and microbiome imbalances in the gastrointestinal (GI) tract are largely unknown

Materials and Methods

11 PHI subjects were studied at T0 and T12 weeks of cART and compared to 10 naive chronically-infected-individuals (C-Naïve). Structure and M1/M2 macrophage polarization (IHC) as well as microbiome (MiSeq Illumina) were studied on gut biopsies. Th17 and Treg cells were assessed in GI and PBMCs (flow cytometry). Gut integrity (E-cadherin) and peripheral inflammation (sCD14, IL-6) were measured in plasma (ELISA)

Results

Subject characteristics are presented in Table 1.

Characteristic	PHI (N=11)	Chronic naive (N=10)	p-value
Age at diagnosis [years], median (IQR)	41 (29-45)	42 (34-51)	0.3408
Male sex, n (%)	11 (100)	8 (80)	0.2143
Ethnicity, n (%)			
Caucasian	10 (91)	7 (70)	0.3108
Other	1 (9)	3 (30)	
Epidemiology, n (%)			
MSM	10 (91)	8 (80)	0.5865
Heterosexual/unknown	1 (9)	2 (20)	
HBV/HCV coinfection, n (%)	3 (27)	3 (30)	1
Nadir CD4 [cell/mmc], median (IQR)	538 (493-609)	147 (12-279)	0.0006
CD4 count at colonscopy [cell/mmc],			
median (IQR)	538 (446-615)	176 (94-279)	0.0008
CD4% at colonscopy, median (IQR)	25 (14-28)	17 (10-18)	0.1295
HIV-RNA at colonscopy [log10 cp/mL], median (IQR)	5.58 (5.16-5.92)	5.13 (4.80-5.42)	0.058

In PHI, cART was introduced at 12, (IQR 9-24) days from PHI diagnosis and lead to viral decay (T0: log10 5.58cp/mL, 5.16-5.92; T12: log10 1.59cp/mL 1.56-1.73, p<0.0001) and CD4+ reconstitution (T0: 538/mmc, 446-615; T12: 756/mmc, 681-938, p=0.0003).

Collagen deposition, reduction of E-cadherin expression as well as migration of monocytes and M1/2 macrophages toward the gut lumen were found in untreated PHI. These features resembled those of C-Naïve, although less pronounced (Fig 1) and progressed at T12 regardless cART (Fig 1).

Untreated PHI and C-Naïve showed comparable Th17 and Treg cells in gut and PBMCs. In contrast, a significant increase of Tregs in ileum (T0: 0.43ug/mL, IQR 0.21-0.75; T12: 1.25ug/mL, IQR 0.75-3.95; p=0.001) and PBMCs (T0: 2.6ug/mL, IQR 1.16-4.69; T12: 5.9ug/mL, IQR 4.67-8.67; p=0.004) was observed (Fig 2).

Figure 2. Treg (CD4+CD25+CD127-) frequencies in ileum and PBMCs

At T0, PHI showed lower plasma sCD14 (4.54ug/mL, IQR 3-5 vs 5.6ug/mL, IQR 5-5.9; p= 0.03) compared to C-naïve (Fig 3) as well as a trend to lower IL-6 and higher E-Cadherin. No significant changes were observed following cART.

At TO, PHI displayed high variability in gut microbiome composition which was markedly greater than that of C-Naïve. In PHI, cART determined a progressive decrease in gut microbial variability (Fig 4).

Untreated PHI show gut damage with structural, and immune alterations, resembling those of C-Naïve, yet less pronounced. Untreated PHI also display lower systemic activation than C-Naïve. Short-term cART in PHI may hinder systemic immune activation, yet it appears to have little/no effect on gut alterations.