

# Treatment-Emergent Integrase Inhibitor Resistance Among Pediatric and Adolescent Populations With HIV-1: A Systematic Review

Cassidy Henegar,<sup>1</sup> Cindy Brothers,<sup>1</sup> Cindy Vavro,<sup>1</sup> Lionel Tan,<sup>2</sup> Michael McKenna,<sup>3</sup> Vani Vannappagari,<sup>1</sup> Ann Buchanan<sup>1</sup> <sup>1</sup>ViiV Healthcare, Durham, NC, USA; <sup>2</sup>ViiV Healthcare, Brentford, UK; <sup>3</sup>GSK, Brentford, UK



# Key Takeaways

- This systematic literature review sought to summarize the frequency of treatment-emergent INSTI DRMs in pediatric and adolescent CLWHIV
- Dolutegravir (DTG)-based INSTI regimens were the most commonly described ART in non-interventional settings, reflecting wider real-world use relative to other INSTIs
- INSTI-based regimens, particularly second-generation INSTIs, were associated with low rates of treatment-emergent drug resistance after virologic failure

# Introduction

- INSTIs are globally preferred first-line antiretroviral agents for treatment in infants, children, and adolescents with HIV<sup>1,2</sup>
- First-generation INSTIs, raltegravir (RAL) and elvitegravir (EVG), and second-generation INSTIs, dolutegravir (DTG) and bictegravir (BIC), are approved for use in children and adolescents (<18 years) meeting indication criteria. RAL and DTG are also available in pediatric formulations
- There are clear advantages with the INSTI class with regards to

# **Methods**

#### **Data Sources and Search Strategy**

- A systematic literature review of English language articles published since January 2010 was conducted in June 2021 and updated in August 2022 using PubMed and Embase
- Conference abstracts from HIV- or infectious disease-focused conferences presented between 2013 and 2021 were also searched

#### **Eligibility Criteria and Study Selection**

- Eligible studies included
- Reports on people with HIV aged <18 years who were taking an INSTI-based oral ARV regimen (RAL, EVG, DTG, or BIC) and had

effectiveness and high barrier to resistance; however, secondgeneration INSTIs have a higher barrier to resistance as compared to first-generation INSTIs. Overall, the INSTI class is an important treatment option for children and adolescents, who are often heavily treatment-experienced and have limited treatment options due to transmitted resistance as well as adherence and tolerability issues<sup>3</sup>

 This systematic review summarizes the frequency of documented treatment-emergent INSTI drug resistance mutations (DRMs) in pediatric and adolescent populations with HIV-1

Virologic failure outcomes reported

- HIV-1 genotypic drug resistance sequencing performed for some or all individuals after a virologic failure event
- Outcomes across studies were reported as proportions with 95% confidence intervals
- Both clinical trials and non-interventional studies were eligible for inclusion, with results reported separately by study design
- Studies from any geographic region were considered
- Studies were not excluded based on the ART history of the population (ART-naive and ART-experienced included)
- Studies including young adults (18-25 years) were not excluded if individuals aged <18 years were also included in the study population
- Where available, specific emergent DRM frequencies were identified and reported by INSTI regimen (RAL, EVG, DTG, or BIC) in CLWHIV

# Results

### **Included Studies**

- A total of 422 unique articles and conference abstracts were identified, with 377 excluded during abstract and title screening, and 28 excluded during full-text review (Figure 1)
- During full-text screening, the most common reason for exclusion was resistance testing only in non-INSTI ART classes (non-nucleoside reverse transcriptase inhibitors, nucleoside reverse transcriptase inhibitors, and protease inhibitors) before widespread availability of 4-class resistance testing

#### Figure 1. PRISMA Flowchart Detailing Selection of Publications for Review

Identification of new studies via databases and conference proceedings



#### Table 1. INSTI Resistance Reported After Failure on an INSTI-Based Regimen in Clinical Trials (n=8)

|   |                |                    |                                                              |                  |                 |                   | _  | Freatment failure<br>on INSTI   | New INSTI DRMs<br>after failure |                                 |  |
|---|----------------|--------------------|--------------------------------------------------------------|------------------|-----------------|-------------------|----|---------------------------------|---------------------------------|---------------------------------|--|
|   | Study          | Region/<br>Country | Population                                                   | Age range<br>(y) | INSTI<br>used   | Total on<br>INSTI | n  | % of total on INSTI<br>(95% CI) | n                               | % of total on INSTI<br>(95% CI) |  |
| 1 | IMPAACT P1066  | Global             | ART-experienced, viremic                                     | 4 wk-18 y        | RAL             | 122               | 60 | 49 (40, 58)                     | 19                              | 16 (10, 23)                     |  |
| 2 | GS-US-292-0106 | Global             | ART-experienced, suppressed                                  | 6-11             | EVG             | 23                | 0  | 0 (0, 15)                       | 0                               | 0 (0, 15)                       |  |
| 3 | GS-US-292-0106 | Global             | ART-naive                                                    | 12-18            | EVG             | 50                | 3  | 6 (1, 17)                       | 0                               | 0 (0, 7)                        |  |
| 4 | GS-US-236-0112 | Global             | ART-naive                                                    | 12-17            | EVG             | 21                | 1  | 5 (0, 24)                       | 0                               | 0 (0, 16)                       |  |
| 5 | IMPAACT P1093  | Global             | ART-naive/ART-experienced                                    | 4 wk-17 y        | DTG             | 142               | 36 | 25 (18, 33)                     | 8                               | 6 (2, 11)                       |  |
| 6 | ODYSSEY        | Global             | ART-naive (Cohort A)/ART-<br>experienced, viremic (Cohort B) | 4 wk-17 y        | DTG             | 350               | 47 | 13 (10, 17)                     | 4                               | 1 (0, 3)                        |  |
| 7 | SMILE PENTA-17 | Global             | ART-experienced, suppressed                                  | 6-18             | DTG +<br>DRV/r* | 158*              | 8* | 5 (2, 10)                       | 0*                              | 0 (0, 2)                        |  |
| 8 | GS-US-380-1474 | Global             | ART-experienced, suppressed                                  | 6-17             | BIC             | 100               | 2  | 2 (0, 7)                        | 0                               | 0 (0, 4)                        |  |

Table 2. INSTI Resistance Reported After Failure on an INSTI-Based Regimen in Non-interventional Studies (n=9)

| Treatment failure | New INSTI DRMs |
|-------------------|----------------|
| on INSTI          | after failure  |

**Records excluded** 

| ening            | (n=422)                                                                                   | (n=377)                                       |   | Study            | Region/<br>Country | Population                | Age range<br>(y) | INSTI<br>used | Total on<br>INSTI | n   | % of total on INSTI<br>(95% CI) | n  | % of total on INSTI<br>(95% CI) |
|------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------|---|------------------|--------------------|---------------------------|------------------|---------------|-------------------|-----|---------------------------------|----|---------------------------------|
| Scre             | Full-text publications reviewed                                                           | Reports excluded                              | 1 | Levy 2020        | US                 | ART-experienced           | 0-24             | DTG           | 78                | 72* | 51 (43, 60)                     | 0  | 0 (0, 5)                        |
|                  | (n=45)                                                                                    | (n=28)                                        |   |                  |                    |                           |                  | RAL           | 11                |     |                                 | 1  | 9 (0, 41)                       |
| σ                |                                                                                           | Study population (n=3)<br>Study design (n=12) |   |                  |                    |                           |                  | EVG           | 52                |     |                                 | 1  | 2 (0, 10)                       |
| Included         | Total studies included in review                                                          | Study outcomes (n=13)                         | 2 | Abo 2019         | UK                 | ART-naive/ART-experienced | 0-17             | DTG           | 29                | 8†  | 14 (6, 26)                      | 1† | 2 (0, 10)                       |
| ncl              | (n=17)                                                                                    |                                               |   |                  |                    |                           |                  | RAL           | 21                |     |                                 |    |                                 |
|                  |                                                                                           |                                               |   |                  |                    |                           |                  | EVG           | 6                 |     |                                 |    |                                 |
| • In t           | otal, 17 articles met inclusion criter                                                    | ria                                           | 3 | Briz 2012        | Spain              | ART-experienced, viremic  | 6-18             | RAL           | 19                | 2‡  | 11 (1, 33)                      | 0  | 0 (0, 18)                       |
| • 8              | <ul> <li>8 clinical trials and 9 non-interventional studies</li> </ul>                    |                                               | 4 | Torres-Fernandez | Spain              | ART-naive/ART-experienced | d 0-17           | RAL           | 110               | 19  | 17 (11, 26)                     | 5  | 5 (1, 10)                       |
| • S <sup>-</sup> | <ul> <li>Study participants were included from 40 countries, primarily through</li> </ul> |                                               |   | 2022             |                    |                           |                  | EVG           | 73                | 3   | 4 (0, 12)                       | 2  | 3 (0, 10)                       |
| m                | ultinational trials (n=8) and cohorts (n                                                  | =1). The most represented                     |   |                  |                    |                           |                  | DTG           | 134               | 5   | 4 (1, 8)                        | 0  | 0 (0, 3)                        |

countries were South Africa (n=9 studies), Thailand (n=8), Uganda (n=7), and the United States (n=7; Figure 2)

#### Figure 2. Countries Contributing Data From Selected Studies (N=17)



#### **Outcomes**

• Results were reported for 352 RAL-based regimens (122 from 1 clinical trial and 230 from non-interventional studies), 225

|   |                  |              |                              |       | RAL<br>EVG | 21<br>6    |     |               |    |            |
|---|------------------|--------------|------------------------------|-------|------------|------------|-----|---------------|----|------------|
| 3 | Briz 2012        | Spain        | ART-experienced, viremic     | 6-18  | RAL        | 19         | 2‡  | 11 (1, 33)    | 0  | 0 (0, 18)  |
| 4 | Torres-Fernandez | Spain        | ART-naive/ART-experienced    | 0-17  | RAL        | 110        | 19  | 17 (11, 26)   | 5  | 5 (1, 10)  |
|   | 2022             |              |                              |       | EVG        | 73         | 3   | 4 (0, 12)     | 2  | 3 (0, 10)  |
|   |                  |              |                              |       | DTG        | 134        | 5   | 4 (1, 8)      | 0  | 0 (0, 3)   |
|   |                  |              |                              |       | BIC        | 1          | 0   | 0 (0, 98)     | 0  | 0 (0, 98)  |
| 5 | Briand 2017      | France       | ART-naive/ART-experienced    | 12-17 | DTG        | 50         | 17  | 34 (21, 49)   | 0  | 0 (0, 7)   |
| 6 | Frange 2019      | France       | ART-naive/ART-experienced    | 5-25  | DTG        | 109        | 22  | 20 (13, 29)   | 0  | 0 (0, 3)   |
| 7 | Frange 2021      | France       | ART-naive/ART-experienced    | 6-18  | DTG        | 134        | 43  | 32 (24, 41)   | 1  | 1 (0, 4)   |
| 8 | Steegen 2019     | South Africa | ART-experienced (third-line) | 0-17  | RAL        | <b>7</b> § | 7   | 100 (59, 100) | 2  | 29 (4, 71) |
| 9 | Patten 2020      | Global       | ART-experienced, viremic     | 0-17  | RAL        | 62         | 24" | 39 (27, 52)   | 4¶ | 6 (2, 16)  |

\*Aggregated results for all INSTI-based regimens reported for virologic outcomes; 55/70 individuals not suppressed at baseline never achieved suppression or had viral rebound after suppression; 17/35 suppressed at baseline did not maintain suppression through follow-up. <sup>†</sup>Aggregated results for all INSTI-based regimens reported. <sup>‡</sup>2/19 never achieved viral load <400 copies/mL during follow-up (non-responders). <sup>§</sup>Study looked at samples from individuals currently failing INSTI-based regimens; there were 7 samples from individuals aged <18 years. 16/62 never achieved viral load <400 copies/mL during follow-up and 8/62 experienced virologic rebound ≥1000 copies/mL after achieving suppression. 4 discontinuations were attributed to virologic failure, immunologic failure, or resistance, with no additional details given.

#### Table 3. Major INSTI DRMs<sup>4</sup> Reported After Virologic Failure on an INSTI-Based Regimen

| Study              | INSTI<br>regimen | Number of failure events with<br>post-failure sequencing | Number of failures with<br>major INSTI DRMs | Major INSTI DRMs reported (n)*            |
|--------------------|------------------|----------------------------------------------------------|---------------------------------------------|-------------------------------------------|
| IMPAACT P1066      | RAL              | 50                                                       | 19                                          | N155H (14), Q148H/K/R (10), G140S/A/C (9) |
| IMPAACT P1093      | DTG              | 36                                                       | 8                                           | G118R (5), R263K (1), E92Q (1), T66I (1)  |
| ODYSSEY (Cohort B: | DTG              | 22                                                       | 4                                           | Q148R/K (2), G118R/S (2), R263K (1)       |

EVG-based regimens (94 from 3 clinical trials and 131 from 3 non-interventional studies), 1184 DTG-based regimens (650 from 3 clinical trials and 534 from 6 non-interventional studies), and 101 BIC-based regimens (100 from 1 clinical trial and 1 from a single non-interventional study)

• In studies reporting virologic failure stratified by INSTI regimen (Tables 1 and 2)

• Failure events were most common on RAL-based regimens (105/313; 33.5%), with 28 (8.9%) experiencing incident INSTI DRMs

• Virologic failures occurred in 16.1% of DTG-based exposures, with 1.3% of total DTG exposures developing incident DRMs

• There were relatively few EVG and BIC exposures, but there were 4.1% with documented virologic failure and 1.1% with new INSTI DRMs among EVG regimens, and 2% with documented failure and 0% with emergent DRMs among BIC regimens

• 2 non-interventional studies (Levy 2020, Abo 2019) evaluated outcomes for all INSTI regimens together; 1 non-interventional study (Steegen 2019) used a denominator of individuals with virologic failure and only reported on incident DRMs

#### ART-experienced)

| Torres-Fernandez 2022 | RAL | 15 | 5 | E138A (1), E138K (1), Y140S (1), Y143R (1),<br>S147G (1), Q148H (1), Q148R (2), N155H (1) |
|-----------------------|-----|----|---|-------------------------------------------------------------------------------------------|
|                       | EVG |    | 2 | N155H (1)                                                                                 |
| Frange 2021           | DTG | 43 | 1 | G118R (1)                                                                                 |

\*Emergent accessory resistance mutations not included in table.

## Conclusions

- Despite growing recommendations for and use of INSTIs among children and adolescents living with HIV, there were relatively few (n=17) published studies looking at treatment-emergent INSTI DRMs
- In this review, regimens containing INSTIs, particularly second-generation INSTIs, were associated with low rates of documented emergent drug resistance after virologic failure
- DTG-based INSTI regimens were the most commonly described ARV in non-interventional settings, reflecting wider real-world use relative to other INSTIS. This is due, in part, to its broader indication for use across HIV treatment groups and multiple dose and formulation options for children
- For the first-generation INSTI, RAL, virologic failure events and resulting documented emergent INSTI DRMs were higher as compared to the second-generation INSTI DTG. While fewer exposures to EVG and BIC were available in this review, similar trends were seen with the firstgeneration EVG having higher failure events and emergent INSTI DRMs as compared to the second-generation INSTI BIC

Acknowledgments: This study was funded by ViiV Healthcare. Editorial assistance and graphic design support for this poster were provided under the direction of the authors by MedThink SciCom and funded by ViiV Healthcare.

References: 1. Panel on Antiretroviral Therapy and Medical Management of Children Living with HIV. https://clinicalinfo.hiv.gov/sites/default/files/guidelines/documents/pediatric-arv/guidelines-pediatric-arv.pdf. Accessed 17 August 2022. 2. European AIDS Clinical Society. https://www.eacsociety.org/media/final2021eacsguidelinesv11.0\_oct2021.pdf. Accessed 17 August 2022. 3. Rojas Sánchez and Holguín. J Antimicrob Chemother. 2014;69:2032-2042. 4. Wensing et al. Top Antivir Med. 2019;27:111-121.