Association between osteogenesis and inflammation evaluated by 18F-NaF and 18F-FDG PET/CT in HIV infected patients P.169

Guaraldi G¹, Prandini N², Esposito F¹, Malagoli A¹, Milic J¹, Beghetto B¹, Nardini G¹, Roncaglia E¹, Raggi P³

1 Modena HIV Metabolic Clinic, University of Modena e Reggio Emilia; Italy; 2 Department of Nuclear Medicine, University of Modena and Reggio Emilia, Modena, Italy.; 3 Mazankowski Alberta Heart Institute, Alberta Health Services, Canada

Background

Initiation and progression of atherosclerotic plaque is a dynamic and complex process involving various pathophysiologic steps including inflammation and calcification.

Formation and progression of atherosclerotic plaque is a complex process involving both inflammation and calcification that may be detected by ¹⁸F-FDG and ¹⁸F-NaF PET/CT, respectively.

Figure 1. Pathogenesis of atherosclerosis

We aimed to analyze the association between inflammation and vascular calcification at different stages of atherosclerosis, as well as the interrelationship between these two processes during HIV disease progression.

Methods

Eighty-two HIV-positive patients with undetectable viral load who underwent two coronary CT at least 2 years apart for evaluation of coronary artery calcium (CAC) progression were enrolled. 50 patients were examined by whole-body¹⁸F-sodium fluoride (¹⁸F-NaF) PET, and 32 with ¹⁸F-FDG PET.

Tracer uptake in various arterial segments was analyzed both qualitatively and semi-quantitatively by measuring the blood-pool–corrected standardized uptake value (target-to-background ratio [TBR]) using 1.6 cut-off value for both ¹⁸F-NaF PET and ¹⁸F-FDG PET.

The Fisher exact test and the Spearman correlation coefficient were used for statistical correlation of tracer uptake with CAC=0, progression and non-progression of CAC. CAC progression was defined as: initial CAC=0 followed by CAC \geq 30, or initial CAC \geq 30 followed by>15% increase yearly.

Results

Figure 2. Study population and distribution according to CAC score.

Median age of 56 years

- 71 (86%) males, 11 (14%) females
- ASCVD mean value of 10.29
- Mean duration of infection 283 months and excellent viroimmunological control (100% presented HIV-RNA < 40 c/mL)

all vascular sites. Both

Table 1. Prevalence and predictors of CAC non-progressor and progressor in

¹⁸ F-FDG	Total	Non- progressor	Progressor	р
¹⁸ F-NaF				
	82	32 (39.02%)	50 (60.98%)	
Patients	32	13	19	
	50	19	31	
Age, years, (SD), [N]	56.52 (7.1) [82]	52.5 (4.54) [32]	59.1 (7.28) [50]	<0.00001
	55.62 (5.81) [32]	52.46 (4.59) [13]	57.79 (5.64) [19]	0.00842
	57.1 (7.82) [50]	52.53 (4.64) [19]	59.9 (8.1) [31]	0.00017
Male gender (%)	71 (86.59%)	25 (78.12%)	46 (92%)	0.14259
	29 (90.6%)	12 (92.3%)	17 (89.5%)	0.99
	42 (84%)	13 (68.4%)	29 (93.5%)	0.05057
ASCVD risk score, (SD), [N]	10.29 (9.57) [35]	7.28 (6.08) [17]	13.13 (11.43) [18]	0.07471
	10.28 (9.53) [18]	7.16 (5.26) [8]	12.77 (11.6) [10]	0.32838
	10.31 (9.9) [17]	7.39 (7.05) [9]	13.59 (11.99) [8]	0.21096
Previous CVD (%)	11 (13.41%)	4 (12.5%)	7 (14%)	0.99
	4 (12.5%)	3 (23.1%)	1 (5.26%)	0.34094
	7 (14%)	1 (5.26%)	6 (19.3%)	0.33004
Type 2 diabetes (%)	30 (36.59%)	11 (34.38%)	19 (38%)	0.92238
	16 (50%)	6 (46.1%)	10 (52.6%)	0.99
	14 (28%)	5 (26.3%)	9 (29%)	0.99
BMI, kg/m², (SD), [N]	25.37 (3.98) [78]	25.8 (4.1) [29]	25.12 (3.94) [49]	0.46882
	24.41 (3.59) [31]	26 (4.12) [12]	23.4 (2.89) [19]	0.0475
	26.01 (4.14) [47]	25.66 (4.2) [17]	26.2 (4.16) [30]	0.6678
Chronic kidney disease (%)	31 (37.8%)	8 (25%)	23 (46%)	0.09304
	12 (37.5%)	12 (37.5%) 3 (23.1%) 9 (47.		0.30664
	19 (38%)	5 (26.3%)	14 (45.2%)	0.30186
Multimorbidity (%)	50 (60.98%)	12 (37.5%)	38 (76%)	0.00114
	18 (56.2%)	5 (38.5%)	13 (68.4%)	0.18848
	32 (64%)	7 (36.8%)	25 (80.6%)	0.00468
Nadir CD4, c/μL, median, (IQR), [N]	189.5 (96.5 - 304.75) [76]	198.5 (134.25 - 423.5) [28]	167.5 (56.5 - 289.5) [48]	0.06959
	161 (78 - 252) [29]	175 (120 - 198.75) [10]	136 (61 - 276) [19]	0.73069
	200 (107.5 - 324) [47]	249.5 (142.75 - 430.5) [18]	170 (59 - 286) [29]	0.01734
CD4/CD8 ratio (SD) [N]	0.94 (0.43) [76]	0.99 (0.43) [28]	0.91 (0.43) [48]	0.29122
	0.89 (0.46) [27]	0.97 (0.55) [10]	0.85 (0.42) [17]	0 40734
	0.97 (0.41) [49]	1 01 (0 37) [18]	0.94 (0.44) [31]	0.40704
HIV duration, months, median, (IQR), [N]	283 (212 75 - 365 5) [82]	281 (154 75 - 335 75) [22]	283 (252 5 - 374 5) [50]	0.0012
	$200 \left[2 12.70 - 300.0 \right] \left[02 \right]$	201 (104.75 - 555.75) [52]	200 (202.0 - 074.0) [00]	0.0301
	290.3 (228.2 - 376.2) [32]	302 (100 - 329) [13] 267 (442 - 240) [40]	219(204.5 - 370.5)[19]	0.33735
	277.5 (191.25 - 354) [50]	267 (113 - 340) [19]	287 (239.5 - 358.5) [31]	0.18708

Figure 3. Distribution uptake of 18F-FDG and 18F-NaF PET/CT based on the number of loci with a TBR > 1.6.

Figure 4. Distribution in progressor, nonprogressor and CAC=0 of the population performing ¹⁸F-FDG or ¹⁸F-NaF PET/CT stratified by each analysed area TBR > 1.6

□FDG ■NaF

Figure 5. Uptake percentage of ¹⁸F-FDG and ¹⁸F-NaF by analysed areas stratified for CAC=0, non-progressor and progressor.

Qualitative radiological interpretation of PET FDG included description of several vasculitis areas thus, we have hypothesized a correlation between vasculitis, which is considered by some authors a risk factor for the developing of cardiovascular diseases and atherosclerosis.

Figure 6. Prevalence of vasculitis, atherosclerosis or both

Table 2. Predictors of of vasculitis, atherosclerosis or both.

	Total	Atherosclerosis	Both	Vasculitis	р
Patients	25	11 (44%)	8 (32%)	6 (24%)	
Age, years, (SD), [N]	56.36 (6.13) [25]	57.55 (6.58) [11]	58.12 (4.45) [8]	51.83 (5.78) [6]	0.11103
Male gender (%)	22 (88%)	10 (90.91%)	7 (87.5%)	5 (83.33%)	0.89862
ASCVD risk score (SD), [N]	11.5 (10.66) [13]	13.51 (14.02) [7]	11.05 (3.13) [3]	7.25 (6.47) [3]	0.82053
Hypertension (%)	20 (80%)	9 (81.82%)	7 (87.5%)	4 (66.67%)	0.6155
Previous CVD (%)	2 (8%)	1 (9.09%)	0 (0%)	1 (16.67%)	0.51537
Statine therapy (%)	6 (24%)	1 (9.09%)	2 (25%)	3 (50%)	0.16792
Triglycerides, mg/dl, (SD), [N]	173.14 (157) [21]	174.91 (210.37) [11]	157 (48.32) [6]	192.5 (109.05) [4]	0.12231
Type 2 diabetes (%)	13 (52%)	6 (54.55%)	4 (50%)	3 (50%)	0.97483
BMI, kg/m ² , (SD), [N]	24.54 (3.72) [25]	23.56 (2.27) [11]	23.18 (3.73) [8]	28.15 (4.01) [6]	0.01673
Nadir CD4, c/μL, median, (IQR), [N]	163.5 (84 -264) [24]	100 (69 -316.5) [11]	209 (59.25 -224.25) [8]	189 (138 -199) [5]	0.75382
CD4/CD8 ratio, (SD), [N]	0.85 (0.39) [22]	1.01 (0.44) [11]	0.56 (0.16) [6]	0.87 (0.32) [5]	0.04932
Current CD4 %, (SD), [N]	31.82 (8.83) [23]	35.25 (9.36) [11]	24.6 (4.25) [6]	32.75 (7.75) [6]	0.04856
Current CD8 %, (SD), [N]	41.04 (9.36) [23]	38.01 (9.6) [11]	45.38 (9.16) [6]	42.25 (8.52) [6]	0.29243
HIV duration, months, median, (IQR). [N]	302 (264 - 377) [25]	270 (264.5 -318.5) [11]	382 (315 -390) [8]	312.5 (245 -369.5) [6]	0.21161
Multimorbidity (%)	16 (64%)	6 (54.55%)	7 (87.5%)	3 (50%)	0.23994

 This study did not find a strong positive correlation between ¹⁸F-FDG or ¹⁸F-NaF TBR and the CAC progression in HIV-infected patients.

 ¹⁸F-FDG and ¹⁸F-NaF PET are not useful for cardiovascular risk stratification in clinical practice but may play a role in the interpretation of specific pathogenesis of cardiovascular disease.

Corresponding author: Giovanni Guaraldi e-mail: giovanni.guaraldi@unimore.it

 ¹⁸F-FDG and ¹⁸F-NaF PET do not identify classic cardiovascular risk factors; these methods can recognize unknown cardiovascular risk factors that do not correlate with the traditional characteristics that describe HIV disease.

 Challenge for PET diagnostic is to identify new tracers that can better correlate with the pathogenesis of CVD and provide new insight mechanism of disease progression.

INIMORE