Longitudinal analysis of proviral HIV-DNA

Eva Heger¹, Stella Peters², Maureen Onyuro¹, Tim Kümmerle², Esther Voigt², Veronica Di Cristanziano¹, Saleta Sierra¹, Lisa Hüsgen¹, Heike Kulartz¹, Rolf Kaiser³, Christoph Wyen³, Elena Knops³

¹ University of Cologne; Institute for Virology, Cologne, Germany; ² Private Practice Ebertplatz, Cologne, Germany

Background: HIV replication can be measured as viral load in plasma and is a suitable and approved marker for monitoring treatment success. Sustained plasma viral load below the limit of detection is the goal in treatment strategy of HIV patients. In time of successful long-term therapies and upcoming cure strategies there is need for a further marker to analyse the influence of a certain drug combination on the proviral reservoir and also for the long-term monitoring of the proviral reservoir. In order to analyse the dynamics of proviral load (pVL) and evolution of proviruses in patients with undetectable plasma viral load we are collecting and examining longitudinal collected samples from 72 patients. Here we present the preliminary results of this ongoing analysis.

Methods: Nucleic acid extraction from 50 µL buffy coat was performed using the DNA and viral NA large volume kit (Roche) for the automated MagNA Pure 96 system. HIV-1 DNA were quantified using the Versant HIV-1 RNA 1.5 Assay (KPCR) (Siemens). For exclusive detection of proviral HIV copies the enzyme mix was incubated 5 minutes at 90°C. In parallel β-globin copies were determined with an inhouse system to calculate the proviral load (pVL). PRRT region was amplified and analysed by NGS with respect to sequence distance (Mega7) between the 3 samples and the detection of resistance mutations (RAMs) and APOBEC associated RAMs, respectively.

Study design

Three consequent samples from each patient (n=72) were collected every 4.5 months. DNA from PBMCs was extracted and the HIV-1 DNA (proviral load; pVL) and PBMC count were measured in a real-time PCR to calculate pVL (log10 total HIV-1 DNA / Mio wbc).

Patients' characteristics

The data were analysed with regard to CD4 cell counts, age, sex, pVL, HIV treatment characteristics (naïve/combinations) and the period of undetectable proviral plasma viral load. With respect to plasma viral load patients were divided into 3 subgroups: <LOD, LLV and viraeic.

Results:

In our study the mean pVL was 2.36 log10 total HIV-1 DNA / Mio wbc (0.63-3.26).

The mean pVL of the measurements from three consequent time points was significantly higher in the PI group compared to the INI group (p=0.025) and also by trend higher compared to the NNRTI group (p=0.058).

In order to include the CD4 cell count into the analysis of the pVL the quotient of pVL and CD4 cell count was determined.

Here, also, the mean of the quotient was significantly higher in the PI group compared to the INI and NNRTI groups (p=0.045 each).

Conclusions: Based on the observed that pVL in patients receiving the standard treatment regimen NRTI-PI is higher compared to other therapy combinations, the role of PI-regimens in sustenance of proviral reservoir has to be determined. Patients treated with INI show low pVL, more frequently successful suppressed plasma viral load and lower evolution. Furthermore, there is also need to examine in detail which factors contribute to the evolution in proviral DNA inspite of suppressed plasma VL. Proviral load could be an easily to perform and useful readout in routine diagnostics.

HIV evolution under treatment

56 out of 72 patients were successfully amplified and sequenced in all 3 samples. Samples were screened for RAM in PR and RT using Stanford DB.

Patients' characteristics

The patients were grouped according to their treatment regimen: without treatment (4%), NRTI-NNRTI (4%), NRTI-NNRTI (24%), NRTI-PI (15%), other combinations (NNRTI-PI, NNRTI-NNRTI, PI-PI, etc) (6%) and patients with treatment change (7%).

Results:

The frequency of APOBEC associated RAMs: The most frequent APOBEC associated RAMs were M461 and G73S in PR and E138K, M184I, M230G in RT. The frequency of these RAMs often correlated with the frequency of adjacent stop codons hinting at the occurrence of non-replication competent strains.

Evolution: Sequences of PR/RT were analysed with respect to sequence distance using Mega7. Higher distances reflected larger differences between sequences. Evolution/alteration was assumed if sequence distance was >0. In the INI group there was the lowest percentage of evolution (36%) compared to NNRTI (46.2%) and PI (44.4%) regimens.