Comparative Efficacy of Dolutegravir Relative to Common Core Agents in Treatment-Naïve HIV-1–Infected Patients: A Systematic Review and Network-Meta-Analysis

Sonya J. Snedecor1, Matthew Radford2, Timothy J Inocencio1, Richard Grove3, Yogesh Punekar2

1Pharmerit International, Bethesda, MD, USA; 2VIIV Healthcare, Middlesex, UK; 3GSK, Middlesex, UK

Introduction

Advances in antiretroviral therapy (ART) have dramatically improved outcomes for patients with HIV.1,2 Evaluation of the comparative efficacy/safety of increasing numbers of treatment choices can be helped by the use of methods such as network meta-analysis (NMA), which has recently been used to inform World Health Organization treatment guidelines.3

Dolutegravir (DTG) is an integrase inhibitor approved for the treatment of HIV-1 disease in combination with other antiretroviral agents.4 A previous NMA conducted in 2013 showed that DTG had similar or superior efficacy to other guideline-recommended agents.5 To reflect changes in the treatment landscape, we updated this NMA to include recently published data.

Objective:

To compare the efficacy of commonly used and emerging core agents and fixed-dose regimens in treatment-naïve HIV-1–infected patients via systematic review and NMA.

Methods

Systematic literature search and NMA

A systematic search of the literature was performed in September 2017 to identify randomized controlled trials (RCTs) for inclusion in the analysis. Key inclusion criteria included phase III/IV RCT, HIV-1 infection, age ≥13 years, treatment-naïve population. Treatments of interest were boosted protease inhibitors (PIs: ritonavir-boosted atazanavir [ATV/r], ritonavir-boosted darunavir [DRV/r], ritonavir-boosted lovirapine [LPV/r]; PI/NRTI), non-nucleoside reverse transcriptase inhibitors (NNRTIs: efavirenz [EFV], rilpivirine [RPV]), and integrase strand inhibitors (INSTIs: dolutegravir [DTG], raltegravir [RAL], elvitegravir/cobicistat [EVG/c], bictegravir [BIC]). Trials comparing any two of these treatments were included in the analysis.

Outcomes

- Virologic suppression (VS) of HIV RNA <50 copies/mL at Week 48 and CD4 cell change only
- Self-comparison present for (different NRTIs)

Statistical analysis

- VS and CD4 change from baseline were estimated using the Bayesian fixed effect network meta-analysis methodology6 and expressed as point estimates (median) and 95% credibility intervals (CrI), using the posterior distribution to estimate the range, with 95% probability that the parameter’s point estimate falls. This methodology additionally allowed probabilities of treatments being better than others to be calculated using the posterior distribution of the treatment difference.
- Fixed effect model was chosen after considerations of population comparability (homogeneity) and fixed and random effect model fit diagnostics (residual deviance)
- Analyses were adjusted for type of NRTIs used in the treatment combination (tenofovir disoproxil fumarate/emtricitabine [TDF-FTC], abacavir/lamivudine [ABC/3TC], or any other NRTIs [Other]).
- Sensitivity analysis was conducted to assess the impact of alternate model specifications (i.e., random effects and no NRTIs adjustment) on efficacy outcomes.

Results

Studies included

- A total of 61 unique trials were identified. After data extraction, 22 trials were included in the analyses with the available number varying by outcome/subgroup.
- The network of treatment comparisons for each outcome is shown in Figure 1.

Figure 1. NMA network

Key

- Self-comparison (different NRTIs)
- Self-comparison present for all patients
- Self-comparison present for baseline VL and CD4 change only
- Comparison present for both VS and CD4 change networks
- Comparison present for CD4 change only

VS at Week 48

- Adjusting for NRTIs, DTG was statistically superior to NNRTIs and PIs for VS at Week 48 (Figure 2). Model results without adjusting for NRTIs (Figure 2) were overall consistent with the adjusted model.

Conclusions

- In treatment-naïve patients, the odds of achieving VS with DTG were higher than all PIs and NNRTIs and similar to other INSTIs.
- Irrespective of the NNRTI, DTG had higher probability of VS compared with all core agents and all patient subgroups, including difficult-to-treat patients with high VL or low CD4 cell counts.
- These results suggest DTG is among the most effective treatments available for the initial treatment of HIV-1 infection.

Table 1. Probability of DTG having higher VS at Week 48 versus comparators

<table>
<thead>
<tr>
<th>Comparator</th>
<th>Baseline VL &lt;200,000 copies/mL</th>
<th>Baseline VL ≥200,000 copies/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATV/r</td>
<td>99% (97%–100%)</td>
<td>100% (100%–100%)</td>
</tr>
<tr>
<td>DRV/r</td>
<td>98% (97%–99%)</td>
<td>100% (100%–100%)</td>
</tr>
<tr>
<td>LPV/r</td>
<td>99% (97%–100%)</td>
<td>100% (100%–100%)</td>
</tr>
<tr>
<td>EFV</td>
<td>98% (97%–99%)</td>
<td>100% (100%–100%)</td>
</tr>
<tr>
<td>RPV</td>
<td>99% (98%–100%)</td>
<td>100% (100%–100%)</td>
</tr>
<tr>
<td>RAL</td>
<td>99% (98%–100%)</td>
<td>100% (100%–100%)</td>
</tr>
<tr>
<td>EVG/c</td>
<td>99% (97%–100%)</td>
<td>100% (100%–100%)</td>
</tr>
<tr>
<td>BIC</td>
<td>99% (97%–100%)</td>
<td>100% (100%–100%)</td>
</tr>
</tbody>
</table>

Figure 2. VS at Week 48 and CD4 change outcomes at Week 48 (ITT population)

Figure 3. VS at Week 48 (baseline VL and CD4 subgroup analyses)

Table 2. OR (95% CrI) OR (95% CrI) OR (95% CrI)

<table>
<thead>
<tr>
<th>Comparator</th>
<th>Baseline VL ≤100,000 copies/mL</th>
<th>Baseline VL ≥100,000 copies/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATV/r</td>
<td>0.5 (0.3–0.8)</td>
<td>0.9 (0.6–1.4)</td>
</tr>
<tr>
<td>DRV/r</td>
<td>0.2 (0.1–0.4)</td>
<td>0.9 (0.6–1.4)</td>
</tr>
<tr>
<td>LPV/r</td>
<td>1.0 (0.7–1.4)</td>
<td>1.0 (0.7–1.4)</td>
</tr>
<tr>
<td>EVG/c</td>
<td>0.5 (0.3–0.8)</td>
<td>0.9 (0.6–1.4)</td>
</tr>
<tr>
<td>BIC</td>
<td>0.9 (0.6–1.4)</td>
<td>0.9 (0.6–1.4)</td>
</tr>
</tbody>
</table>

Acknowledgments

Funding for the study was provided by VIIV Healthcare and Gilead Sciences. Editorial support in the form of writing assistance, collating author comments, grammatical editing, and referencing was provided by Chrysalis Research, at the direction of the study sponsor. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References


HIV Drug Therapy Glasgow; October 28–31, 2018; Glasgow, UK